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Path integral for coherent states of the dynamical U2 group 
and U211 supergroup 

E A Kochetovt 
Laboratoly of Theoretical Physics, Joint Institute for Nuclear Research 141980 Dub& Russia 

Received 27 October 1992. in final form 12 March 1993 

Abstract. A path-integral formulation in the representation of coherent states for the unitary UZ 
group and UZ~I  supergroup is introduced. U2 and U Z ~ L  path integrals are shown to be defined on 
the coset spaces U2/Ui @VI  and U21dUill @ U t  respectively. These cosets appear as curved 
classical phase spaces. Partition functions are expressed as path integrals over these spaces. 
In the case when U2 and UZ~I. are the dynamical groups, the corresponding path integrals are 
evaluated with the help of linear fractional transformations that appear as the group (supergroup) 
action in the coset space (supenpace). Possible applications for quktum models are discussed. 

1. Introduction 

The standard path integral over fermionic and bosonic variables in the holomorphic 
representation is widely used in various quantum-mechanical problems. Such an integral can 
be thought of as an integral over the classical phase space associated with ordinary Fermi 
and Bose coherent states (cs). These states provide a convenient basis for unitary irreducible 
representations (UIRS) of the Bose oscillator group and Fermi oscillator supergroup, whose 
Lie algebras consist of generators 

(btb, bt, b,  11 and (ftf, ft, f, 11 (1) 

[b, b71 = {ft, f) = 1. 

respectively. The standard commutation (anticommutation) relations are as follows 

Bose and Fermi cs can be represented as 

where LY is a complex number and 6 is a Grassmann parameter. By using decomposition 
of unity in terms of states (2) 

. 
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one can obtain path integral with respect to the measure 

which is to be understood as an infinite pointwise product of measures entering into equation 
(3). 

The path measure (4) is invariant under linear shift transformations 

f f + f f + f f o  8+8+8o.  (5)  

The corresponding classical phase space can be thought of as a direct product of a 
complex plane and a complex flat Grassmann manifold. The Bose (Fermi) oscillator group 
(supergroup) acts in this space through linear shifts (5) .  To be more specific, unitary 
transformations 

induce canonical transformations (5) in the classical phase space. 
The flat path integral over measure (4) turns out to be very useful in the framework of 

perturbation theory, as the unperturbed Hamiltonian HO appears to be a linear combination of 
generators (1). However, it is practically useless in attempts to go beyond the perturbation 
expansion. This is merely due to the fact that the exact diagonalization of the whole 
Hamiltonian H = HQ + Hi,, requires more general transformations than those of the 
harmonic-oscillator type. 

Let G be a group of transformations that result in diagonalization of H .  Then its Lie 
algebra L is known to contain H as an element L is then called the spectrum generating 
algebra (SGA) and the corresponding group G is known as a dynamical group. Note that the 
direct product of oscillator groups generated by (1) plays the role of the dynamical group 
for Ho. 

The new phase space (an orbit of the coadjoint representation of L )  turns out to be a 
curved one. The path integral over css associated with L is to be regarded as an integral 
in a curved space with a much more complicated measure than that of equation (4). An 
important point is that G acts in this space via linear fractional transformations, which 
induce an appropriate change of integration variables in the corresponding path integral. 

The concept of css associated with the UIRS of Lie group G was first introduced by 
Perelomov (1972) and generalized to the case of supergroups by Bars and Giinaydin (1983). 
Let us outline below the main features of this approach. Let L be a Lie algebra that has 
the so-called 3-grading decomposition with respect to the Lie algebra LO of its maximal 
compact subgroup: 

t = L-1 fB LO fB L” 

Lo contains the generator Q of an Abelian U, factor, that gives the grading, i.e. 

L O = H @ Q  

and 

[Q,  HI = 0 [ Q ,  L”] = L+‘ [Q,  L-’1 = -L-’. 
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The elements 1" E Lm satisfy the formal commutation relations 

[P, l"] E La+" n ,  m = -1,O, +I (7) 

where L"+,,, = 0 for In + ml > 1. For Lie superalgebras the same definitions (6), (7) 
hold, but the bilinear product (7) is now understood to be either an anticommutator between 
any two odd elements of superalgebra L or a commutator. The important point concerning 
the decomposition (6) is that if there exists a set of 'lowest weight' states ilw) that are 
transformed irreducibly under the maximal compact subgroup action and are annihilated by 
all the~annihilation operators L-I, then the set of states 

(L")Pllw) p = 0, 1,2, .~. . (8) 

form the basis for the irreducible representation of the whole group G. It then follows that 
the generalized css associated with algebra L can be symbolically defined as 

where the ori are even or odd Grassmann parameters (depending on the bosonic or 
fermionic nature of the raising operators 1"). For ordinary Lie groups the ai are complex 
numbers. The CS vectors (9) provide a convenient basis for constructing the path- 
integral representation of systems with dynamical group G, the crucial point being that 
the irreducibility of the states (8) ensures decomposition of unity in terms of CS (9). 

The topological and algebraic structure of the generalized css and associated path 
integrals as well as possible applications to the time-independent and time-dependent 
systems with dynamical symmetry have been extensively discussed in thereview by Zhang et 
al (1990). Note also the paper by Kuratsuji (1981) where the path integral over generalized 
css is expressed as an integral over the complex phase space with a non-trivial geometrical 
structure. 

For physical applications, especially in quantum-optical models, it is convenient to deal 
with oscillator-like representations of the L-algebra generators. Then, all the L-generators 
are expressed as bilinears of Base (Fermi) creation and annihilation operators. As is well 
known, n2 bilinears 

bib! [bj, b,!] = aij i, j = 1,2, . . . , n 

generate the Lie algebra of the U. group. To extend U. to the unitary U,,,,, supergroup, one 
has to add to the n bosonic operators m fermionic ones f,, /1 = 1,2, . . . , m. Bilineas bib! 
and f P j $  respectively, form the Lie algebras of U,, and U,,, under commutation, whereas 
Bose-Fermi bilinears bi f?  and b/ f ,  close into the set bib!, f ,  f j  under anticommutation 

(bifL, $ f v 1  = & j f , ' f ,  + G,,bjfbi'. (10) 

In the subsequent sections we will be concerned with the simplest cases n = 2 and n = 2, 
m = 1. 
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2. Vz Lie algebra in the oscillator-like representation and U, css 

In the Bose-oscillator-like representation the generators of the U2 Lie algebra can be taken 
to be 

(11) K1 = blbi t K2 = bzb2 t K+ = bAb1 K- = b,bz. t 

U2 linear Casimir operator is a number operator N = blbz + bfb1. All the higher U2 
Casimirs are functions of N due to &e fact that in realization (11) we deal with fully 
symmetric U2 representations that are labelled by the eigenvalues of N .  As is well known 
U2 = SU2 @ UI which means that the U2 algebra can be decomposed into the direct sum 

(K+,  K- ,  KO = $(b:bz - b f b ~ ) ]  fB {NI  (12) 

where generators K+, K-,  KO span the SUz subalgebra 

[K+, K-I = 2Ko [KO, K*I = fK*. (13) 

Algebra (1 1) is easily seen to have 3-grading decomposition with respect to the UI @ U1 
subalgebra generated by K1, Kz: 

L+ = ( K + ]  L- = ( K - )  Lo = (Ki,  K z ]  

grading being achieved with the generator K2. The lowest-weight state which is transformed 
irreducibly under UI@UI group action and is annihilated by the K- operator looks as follows 

IW = In, 0) (14) 

where 

b:blln, m} = nln, m )  blbzln. m )  = mln, m) n, m = 0,1 ,2 , .  . . . 
Due to equation (9) the U2 cs can be written in the form 

I@; n )  = (1 + Jrr12)-"12exp((Yb~bl)ln, 0) (15) 

where the complex number (Y belongs to the coset space U~/UI @ U1 which is isomorphic 
to the complex projective space CP'. Note that cs (15) depends upon the representation 
index n > 0-the eigenvalue of the linear Casimir operator. For every value of n the basis 
in the U2 representation space can be chosen as 

le,) = In - P. P) p = O ,  ..., n 

so that dim(ler}) = n + 1. The overlap of two states la': n )  and la; n)  is given as 

(0': n 1 (Y; n) = (I + ~ U ' J ~ ) - " ' ~ [ I +  ~ ( Y ~ ~ ) - ~ ~ ~ [ I  + (3'01)". (16) 

An important property of these states is that they satisfy the completeness relation 

S l ( ~ : n ) ( ( ~ ; n l d ~ " ( ~ i ) = i , = ~ l e ~ ) ( e ~ l  p=0 (17) 
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where the Uz-invariant integration measure looks as~follows 

It is easily seen that 

As a result of equation (19), for any operator F acting 
lep) one has 

the (n + 

The averages over U2 css look as follows 

3493 

(19) 

D space spanned by 

3. Path integral 

Let us consider the path integral over U2 css for the partition function 

z = s p e d H  

where the Hamiltonian H belongs to the U2 enveloping algebra. From equation (20) one 
has 

Z = F/ d/*"(or)(or; nle-BHlor; n ) .  
n=o 

Defining 6 as p / N  and using equation (17) we write, in the usual manner: 
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Up to the second order in E one has 

where 
(aj; nle-fHIai; n) = (aj; nla;; n) exp(-&,&, a;)) 

X"(Zj, a;) = (aj; nlHlCY;; n)/(aj; nIa;; n). 
The integration over dp.(a) in accordance with equation (20) yields 

d p a k W ;  ~ U N ;  n)(ao; nla; n) = S P I ~ N ;  n)(w nl = (eo; ~ I z N ;  n) s 
so that 

It can easily be checked that the terms ,of O(E'), E + 0 in (aj; nle-fHlai: n) do not affect 
the limiting form (23) (Berezin 1971). 

For any state vector 111.) which belongs to the (n + l)D Hilbert space with an element 
2 nJ2 Pm(a ) / ( l+  14 ) 

(11.1 = dPn(W11.la)(aI 

where P,,,(a) is an arbitrary polynomial of degree m < n (Perelomov 1972), one has 

which can be written in its components as 

d ~ ~ ( p )  = / dpLn(a)(a; nlB; n ) h ( a )  $"(a) = (@la; n). (24) 

Note that the reproducing kernel (CY; nib; n) acts as a delta function with respect to the 
measure dpn(a). Due to equation (24) the integration over dpo in (23) can be carried out 
explicitly to yield 

With aj-l = aj - Sj it then follows 

In the continuous limit this yields 

where the following normalization holds: 

Let us note that the partition function Z could be evaluated directly through the pointwise 
representation (22), provided an explicit transformation of the css under an appropriate 
group action to first order in E is known. This has recently been done for SUI,I dynamical 
systems by Gerry (1989) and later for the Sh;c case by Ellinas (1992). In this way, one is 
led to a set of recursion relations on the group parameters which, in the limit E -+ 0, gives 
rise to a set of coupled first-order differential equations. The whole procedure requires long 
calculations even in the simplest cases. In the next section, we will show that there exists 
a direct way to evaluate the sum over paths in equation (27). 
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4. Evaluation of the U2 path integral 

In order to illustrate how the general formula (27) works, let us take H in the form 

H = olblbl + wzbib2 + ib:bl+ hb2bl (28) 

where wto2  > lhlZ for the Hamiltonian (28) is to be bounded from below. For the partition 
function in accordance with equations (27) and (21) one gets 

where the quantity 

can be defined as the Lagrangian. The Euler-Lagrange equations lead to the equations of 
motion 

ff = [X", U) 

where [, ) is a Poisson bracket defined by 

This indicates that the classical phase space spanned by U and 6 is curved-in fact the 
complex projective line CP' N S2 (Berezin 1975). 

Due to the relation U2 = SU2 8 Ut the general U2 transformation can be taken to be 

where 1uI2+ luI2 = 1 and 0 < 4 < 2ir. The path integral in equation (27) can be evaluated 
with the help of transformations of the integration variables which are induced by the U2 
action in the coset space U2/Ul @UI. U2 acts in the integration space U,/U, @U1 through 
the following canonical transformations: 

CY + 01 = (uc? + u)/(-Ga + i) (31) 

where the group parameters U and v are~kept constant. The integration measure dpn(cx) ,is 
invariant under transformations (31). The same is true for the kinetic term, for example 
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where the total derivative can be dropped since a(0) = a(,9). 
Upon taking 

one eliminates the terms linear in A and ,% in the exponent of equation (29) which results in 

z = E e x p  (-nb- 
2 zn n 

where the path integral 

can be evaluated directly through the definition (25): 

i.e. by taking into account that 

ezenKOlaj-~) = e-fnnlaj-le2c") 

one gets 

By using decomposition of unity (17) the integration over d p l  . . .dpN-l can be carried out 
explicitly. This yields 

which gives 
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It then fol!ows that 

which yields the correct speckm 

En,,n2 = +(@I + uz)(ni fez)  + - nz) n1, nz > 0. 
At the end of this section it should be pointed out that the css (15), in fact. coincide with 

those of the SUz group which can be parametrized by the points of the coset space SUz/UI 
(Perelomov 1972). This is merely due to the fact that UZ = SUz @ U,. Thus, in order 
to construct a path integral for a spin system with dimensionality 2 j  + 1 one can employ 
equations (21) where one must put j = i n .  For example, for the linear spin Hamiltonian 

. . 
H =.Q& + hK+ +AX-  , Kolm) = mlm) m = -j, - j  + 1 ,..., j 

one gets 

which is readily evaluated with the help of substitution (31) 

5? Path integral over U211 cs 

Thus far, we have discussed the pathintegral representations for the U2 Lie algebra. 
From the physical point of view ordinary Lie algebras are relevant for purely bosonic 
(or fennionic) systems. For example, the partition function for a supedluid helium model 
is expressed as a path integral over CSs associated with the non-compact  SUI,^ algebra 
(Gerry and Silverman 1982). In the models of quantum optics, however, Hamiltonians that 
include both bosonic and fermionic degrees of freedom principally appear. One needs then 
to consider path integrals over super CSs associated with underlying superalgebra. For 
example, the compact U,,, and nonxompact OSPzp superalgebras turn out to be SGAS for 
Jaynes-Cummings and Rabi Hamiltonians, respectively (Buzano et U [  1989). Note also that 
it has recently been considered the path integral for OSPllz css (Schmitt and Mufti 1991). 
Here we consider the simplest 9D unitary UZ!~  supergroup that appears as the dynamical 
group for various quantum-optical Hamiltonians. 

In the oscillator-like representation the UZ,, generators can be taken to be (Bars and 
Giinadyin 1983) 

. 

where (f, ft] = 1. It then follows that equation (36) gives the 3-gradinz decomposition 
with respect to the maximal compact subsupergroup with superalgebra Uljl @U]. Grading 
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is achieved with the operator b i b .  The operators in the fmt curly brackets in LO form the 
basis for the U111 superalgebra. As 'is known, all the irreps. of U111 €3 U1 superalgebra are 
ID or 2D (de Crombrugghe and Rittenberg 1983). The basis can be taken as 

ID case: lea) = 10, m ) ~  €3 10)~ 

2D case: let) = In - 1, m ) ~  €3 I1)F 1%) = In. m ) ~  €3 IO)F 

where use is made of the standard notation so that 

f IO)F = 0 f t l o )F  = I1)F. 

The U211 supergroup acts in the superspace which is formed as the Grassmann envelope of 
the U2p superalgebra representation space (see, for example, Berezin and Tolstoy 1981). 
The basis of this superspace is given as ]eo) in the ID case and lez). <]el) in the ZD case. Here 
< is a Grassmann parameter and vector [el) is chosen to have an odd grading (consequently, 
le2) is even p d e d ) .  

The lowest-weight vectors that are transformed irreducibly under the U111 €3 U1 
supergroup action and are annihilated by all L- operators are as follows 

10.0)~€3 IWF and I ~ . O ) B € ~ I O ) F + < I ~ - ~ ~ O ) B € ~ I ~ ) F .  (37) 

Due to formula (9) the U211 CS can be represented in the form 

Notice that cs (38) depends upon ordinary and Grassmann parameters simultaneously while 
the representation index n is now an eigenvalue of the Uzll h e a r  Casimir operator 

N = blbi -k bLb:! -!- f i  f. 

The overlap of the two states (38) is 

tt #e n 6%' +n-) @e (39) 
(a', 8'; n]a, e;  n )  = (a'; nla; n)  exp - -- ( 21+la12 21+ICy'lZ I+Z'a 

where (a'; nla; n) is given by equation (16). Unity in the representation n is resolved as 

I, = la, e;  n)(a, e;  nl dPc,(a, e)  (40) J 
where the UZ,~ invariant measure reads as follows 
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The Uzll path integralcan be obtained by the same procedure as that used in the U2 case. 
The new point is that a more complicated kinetic term appears and the antiperiodic boundary 
conditions for b' are: 

where 

H ( a ,  8) = ((U, 8; nlHlcr, 8; n ) .  

In the case when U211 is a spectrum generating algebra, i.e. H belongs to the Uzll 
even subalgebra, path integral (42) can be calculated by a change in integration variables 
in accordance with the Uzlt group action in the classical phase space which is isomoqhic 
to the coset Uzll/UIII @ UI.  

Namely, the Uzp supergroup element in the fundamental representation can be defined 
as 

U = (;; 82 Y :; ;) e, 
A = 1  

where 01.2,3 and A1,2 are even Grassmann parameters a id  81,2,3,4 are the odd ones. Then, 
under the Uzlt action the supervariable (a, 8) E Uz11/Utll @Ut undergoes a linear fractional 
transformation (Bars and Giinaydin 1983) 

The integration measure in  equation (42) remains invariant under transformations (43). By 
specifying the U211 parameters in equation (43) in the same manner as in the previous section 
for the U2 case, one can evaluate the path integral (42). This is equivalent to the direct 
diagonalization of the Hamiltonian by means of appropriate Uzp rotation in the super Fock 
space. 

6. Conclusions 

In conclusion,' some remarks have to be made. First of all, it should be pointed out that we 
are dealing with a s  associated with finite-dimensional Lie algebras (superalgebras). As a 
consequence, only quantum systems with finite degrees of freedom are being considered. 

The next point is that the path integral over U2 and U211 CSs turns out to be very 
convenient in the semiclassical treatment. In the general quantization scbeme for curved 
phase spaces developed by Berezin (1975) the representation index n labelling css associated 
with a group of motions of this phase space plays the role of l / f i .  In the oscillator-like 
representation this meah a large particle number limit. The stationary-phase method for 
integrals (27) and (42) as n -+ cc leads to~the classical Euler-lag range^ equations. The 
import& point is that by means of the substitution cd --f a/& the integral (27) in the limit 
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n -+ w goes to the ‘ffat’ one with the standard measure DnDZ. Thus, one can employ 
standard methods in dealing with the SU2 path integral in the limit of a large total spin. 
This is in complete accordance with the fact that SU2 css at large values of spin j go over 
into the ordinary (Glauber) css (Perelomov 1972). For example, the partition function (35) 
in the limit j + w reads as 

where the coefficient h is supposed to be time-dependent. The path integral (44) is seen to 
he easily calculated (see, for example, Dacol 1980). 

As,another example the nuclear Hamiltonian proposed by Lipokin, Meshkov and G l i  
(LMG) which in the spin representation reads as (Lipkin et al 1965) 

1 r H = E K ~ +  -(K:+ ~ 2 )  [ 4 j  

where the Ki are the SU2 generators of dimensionality 2 j  + 1 with j = in could be 
considered. Here n is the total number of particles in the LMG model, E and r are real 
parameters. Note that H belongs to the SU2 envebping algebra. With the help of equations 
(21) at p = 2 one can readily obtain the path-integral representation for the LMG model in the 
form of equation (27). It should be noted that a BohrSommerfeld quantization procedure 
based on the SU(2) path-integral representation with large j = n/2  has successfully been 
applied to the LMG model hy Shankar (1980). 

It should also be pointed out that representations (27) and (42) hold for Hamiltonians 
that belong to the U2 and U211 enveloping algebras, as has just been mentioned for the SU2 
case. 

The final remark concerns linear fractional transformations (31) and (43). The U, and 
U211 integration measures remain invariant under the corresponding local linear fractional 
transformations. This means that one could try to, use them in calculating U2 and UZ,, path 
integrals with parameters depending on time. These and related problems will be discussed 
elsewhere. 
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